Name of the Teacher: Dr. Monika Gupta Subject: Chemistry Class: B.Sc. 5th SEM Subject: Class: Paper: Organic Chemistry

1st week	Introduction of Organometallic compounds with special reference to Grignard reagent. Structure and chemical reactions of Grignard reagent	
2 nd week	Preparation and reactions organozine and organilithium compounds. Problems.	
3 rd week	Assignment/Test of Organometallic compounds. Introduction of Spectroscopic techniques, principle of NMR spectroscopy	
4 th week	Equivalent and non-equivalent protons. Calculation of number of signals	
5 th week	Position of signals, concept of chemical shift. Shielding and deshielding of protons	
6 th week	Chemical shift value of some typical characteristic proton types. Study of peak area and Proton counting, Intensity of peak	
7 th week	Factors affecting Chemical shift, splitting of signals.	
8 th week	Rules for spin-spin splitting of proton signals, Coupling constant and magnetically equivalent protons	
9 th week	Discussion and explanation of PMR spectra of Ethyl bromide; n-propyl bromide; isopropyl bromide; 1,1 dibromomethane; 1,1,2 tribromoethane Numerical problems on PMR spectroscopy	
10 th week	Study of spectra of ethanol, acetaldehyde, ethylacetate, toluene, benzaldehyde, acetophenone. Applications of PMR spectroscopy Numerical problems on PMR spectroscopy	
11 th week	Carbohydrates, classification, glucose & fructose- Osazone formation, mutarotation & mechanism. Interconversion of glucose & fructose	
12 th week	Chain lengthening & Shortening, Epimerisation, Fischer and Hawarth projection of glucose & fructose and determination of ring structure. Erythro & threo isomers.	
13 th week	Configuration of saccharides. Properties of Sucrose, inversion of cane sugar, Fischer and Hawarth projection of sucrose.	
14 th week	Properties of Maltose and its structure, Properties of Lactose and its ring structure. Structure of ribose & deoxyribose. Properties of Starch, distinction between Amylose and Amylopectin. Test of NMR Spectroscopy.	
15 th week	Structure of cellulose. Derivative of cellulose and their applications .Revision of Disaccharides and polysaccharides and problem solving	
16 th week	Test of NMR Spectroscopy. Problems of carbohydrates.	
17 th week	Discussion and problems taken, Tests/Seminars/Assignment	
18th week	Discussion and problems taken, Tests/Seminars/Assignment	

Name of the Teacher: Dr. Monika Gupta Subject: Chemistry (Minor) Class: B.Sc. 3rd SEM

Paper: Chemistry of Metals & Non Metals, Hydrocarbons and Solutions

1st week	Alkanes: General methods of preparation and Reactions:
2 nd week	Alkanes: Free radical substitution reaction
3 rd week	Alkenes: General methods of preparation
4 th week	Reactions of Alkenes: cis-addition (alk. KMnO4) and trans-addition (bromine)
5 th week	Reactions of Alkenes: addition of HX (Markownikoff's and anti- Markownikoff's addition), hydration
6 th week	Reactions of Alkenes: ozonolysis, oxymecuration-demercuration, hydroboration oxidation
7 th week	Alkynes: General methods of preparation
8 th week	Reactions of Alkynes: formation of metal acetylides and acidity of alkynes, hydration to form carbonyl compounds
9 th week	Reactions of Alkynes: addition of bromine and alkaline KMnO4, ozonolysis and oxidation with hot alk. KMnO4
10 th week	Test/Assignment of Alkanes, Alkenes & Alkynes
11 th week	Structure of benzene (Kekule, hybrid and resonance)
12 th week	Preparation of benzene, electrophilic substitution reactions in benzene
13 th week	Electrophilic substitution reactions in benzene citing examples of nitration, halogenation
14 th week	Mechanism of Friedel Craft's alkylation and acylation
15 th week	Carbocationic rearrangement, side chain oxidation of alkyl benzene.
16 th week	Test of aromatic hydrocarbons
17th week	Discussion and problems taken, Seminars/Assignment
18 th week	Discussion and problems taken, Seminars/Assignment

Name of the Teacher: Dr. Monika Gupta Subject: Chemistry (Major) Class: B.Sc. 3rd SEM Subject: Class: Paper:

Fundamental Chemistry-III

1st week	Arrhenius theory of ionization, Ostwald's Dilution Law	
2 nd week	Debye-Huckel–Onsager's equation for strong electrolytes (elementary treatment only), transport number, definition and determination by Hittorf's methods	
3 rd week	Electrolytic conduction, factors affecting electrolytic conduction.	
4 th week	Applications of conductivity measurements: determination of dissociation constant (Ka) and degree of dissociation, determination of solubility product of sparingly soluble salts	
5 th week	Conductometric titrations and their curves	
6 th week	Definition of pH and pKa, buffer solution, buffer action,	
7 th week	Henderson – Hasselbalch equation, buffer mechanism of buffer action.	
8 th week	Reversible electrodes – Metal- metal ion gas electrode, metal – metal insoluble salt- anion electrode and redox electrode.	
9th week	Class Test/Assignment	
10 th week	Alkyl halide: Nomenclature and classes of alkyl halides, general methods of preparation, Physical properties	
11 th week	Chemical reactions of Alkyl halides, mechanisms (SN1, SN2, E1, E2 and E1cb) and stereochemistry of nucleophilic substitution reactions of alkyl halides with energy profile diagrams,	
12th week	Elimination vs substitution reactions and Problem discussion	
13 th week	Aryl halides: Methods of preparation	
14 th week	Reactions: Aromatic nucleophilic substitution and effect of substituents on reactivity	
15 th week	Benzyne Mechanism: KNH2/NH3 (or NaNH2/NH3	
16 th week	Reactivity and relative strength of C-halogen bond in alkyl, allyl and benzyl halides.	
17th week	Discussion and problems taken, Seminars/Assignment	
18 th week	Discussion and problems taken, Seminars/Assignment	

Name of the Teacher: Dr. Monika Gupta Subject: Chemistry (Minor) Class: B.Sc. 1st SEM Subject: Class: Paper:

Basic concepts of Chemistry

Atomic models, Rutherford's model and its limitations	
Bohr's model and its applications	
Dual nature of matter and light, de Broglie's relationship, Heisenberg uncertainty principle	
Concept of orbitals, quantum numbers	
Shapes of s, p and d orbitals	
Rules for filling electrons in orbitals - Aufbau principle, Pauli's exclusion principle and Hund's rule	
Electronic configuration of atoms, stability of half-filled and completely filled orbitals	
Numerical Problems	
Class Test of Atomic structure & Assignment	
Brief history of the development of periodic table	
Modern periodic law and the present form of periodic table	
Periodic trends in properties of elements -atomic radii, ionic radii, inert gas radii	
Nomenclature of elements with atomic number greater than 100	
Periodic trends in properties of elements - ionization enthalpy	
Periodic trends in properties of elements - electron gain enthalpy	
Periodic trends in properties of elements - electronegativity, valency	
Test of Periodic trends in properties of elements.	
Discussion and problems taken, Seminars/Assignment	

Name of the Assistant /Associate Professor: **DR. MUKESH KUMAR**

Class Section: **B.Sc.** 5th Sem (Inorganic Chemistry)

Department: Chemistry

1st week	Limitations of valence bond theory, an elementary idea of crystal-field theory	
2 nd week	Crystal field splitting in octahedral complexes	
3 rd week	Crystal field splitting in tetrahedral complexes	
4 th week	Crystal field splitting in square planar complexes	
5 th week	Factors affecting the crystal-field parameters, Discussion, and problems taken	
6 th week	A brief outline of the thermodynamic stability of metal complexes	
7 th week	Factors affecting the stability	
8 th week	Substitution reactions of square planar complexes of Pt(II), Discussion and problems taken	
9 th week	Types of magnetic behavior, methods of determining magnetic susceptibility	
10 th week	Spin-only formula, L-S coupling, correlation of s and eff values	
11 th week	Orbital contribution to magnetic moments	
12 th week	Application of magnetic moment data for 3d metal complexes, Discussion and problems taken	
13 th week	Types of electronic transitions, selection rules for d-d transitions,	
14 th week	Spectroscopic ground states, spectrochemical series	
15 th week	Orgel-energy level diagram for d ¹ and d ⁹ states	
16 th week	Discussion of the electronic spectrum of $[Ti(H_2O)_6]^{3+}$ complex ion, Discussion and problems taken	
17 th week	Discussion and problems taken, Tests/Seminars	
18 th week	Discussion and problems taken, Tests/Seminars	

Name of the Assistant /Associate Professor: DR. MUKESH KUMAR Class Section: B.Sc. $\mathbf{1}^{ST}$ SEM

Department: Chemistry

Nomenclature - Fundamental Chemistry – I (Major)

Course code- 24CHEM401DS01

1st week	Ionic bond, lattice energy, Born-Haber cycle, and its applications.
2 nd week	Fajan's rules, hydration energy, Dipole moment, and percentage ionic character.
3 rd week	Resonance and resonance energy: study of some inorganic and organic compounds. Molecular Orbital Approach: LCAO method
4 th week	Bonding and antibonding MOs, and their characteristics for s-s, s-p, and p-p combination of atomic orbitals.
5 th week	Non-bonding combination of orbitals, MO treatment of homonuclear diatomic molecules of 1st and 2nd periods (including the idea of s-p mixing).
6 th week	Heteronuclear diatomic molecules such as O ²⁻ , O2 ²⁻ , N ²⁻ , CO, NO ⁺ , CN ⁻ .
7 th week	Comparison of VB and MO approaches.
8 th week	Oxides – structures of oxides of Nand P.
9 th week	Oxyacids – structure and relative acid strengths of oxyacids of nitrogen and phosphorus.
10 th week	Structure of white, yellow, and red phosphorus.
11 th week	Oxyacids of sulphur – structures and acidic strength, H2O2–structure, properties, and uses.
12 th week	Basic properties of halogen, interhalogen compounds-types and properties,
13 th week	Halogen-acids and oxyacids of chlorine – structure and comparison of acidic strength.
14 th week	Brönsted-Lowry concept, conjugate acids and bases, relative strengths of acids and bases,
15 th week	Effects of substituent and solvent, differentiating and leveling solvents.

16 th week	Lewis acid-base concept, classification of Lewis acids and bases, Lux-Flood
	concept.
17 th week	Discussion and problems taken, Tests/Seminars
18 th week	Discussion and problems taken, Tests/Seminars

Name of the Assistant /Associate Professor: DR. MUKESH KUMAR Class Section: B.Sc. 3^{rd} SEM

Department: Minor Chemistry
Nomenclature - Chemistry of Metals & Non-Metals, Hydrocarbons and Solutions

Course code- 25CHE403MI01

1st week	Occurrence of elements in nature
2 nd week	Physical and chemical properties of metals and non-metals .
3 rd week	Minerals and ores, metallurgical processes benefaction, roasting,
4 th week	Metallurgical processes, calcination and reduction of metal oxides pr
5 th week	Refining of metals, metallurgy of Fe, and Zn
6 th week	Refining of metals, metallurgy of Al and Cu.
7 th week	Types of solutions
8 th week	Expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions,
9 th week	Explanation of Raoult's law
10 th week	Colligative properties - relative lowering of vapour pressure
11 th week	Colligative properties - elevation of boiling point
12 th week	Colligative properties - depression in freezing point

13 th week	Colligative properties - osmotic pressure
14 th week	determination of molecular masses using colligative properties
15 th week	Explanation of abnormal molecular mass
16 th week	Concept of Van't Hoff factor
17 th week	Discussion and problems taken, Tests/Seminars
18 th week	Discussion and problems taken, Tests/Seminars

Name of the Assistant /Associate Professor: DR. MUKESH KUMAR

Class Section: **B.Sc.** 1ST **SEM** Department: SEC Chemistry
Nomenclature - Role of Chemistry in Society

Course code- 24CHE401SE01

1 st week	Composition of soil, concept of pH, and pH measurement of soil
2 nd week	Complexometric titrations, chelation, chelating agents, use of indicators, estimation of calcium and magnesium ions in soil.
3 rd week	Definition of pure water, sources responsible for contaminating water,
4 th week	Water sampling methods, water purification methods, and the determination of dissolved oxygen of a water sample.
5 th week	A general study including preparation and uses of the following: Hair dye, soap,
6 th week	General study including preparation and uses of the following shampoo, suntan lotions, face powder,

7 th week	General study including preparation and uses of the following lipsticks, talcum powder, and nail enamel.	
8 th week	General introduction to pesticides (natural and synthetic), benefits and adverse effects, and changing concepts of pesticides	
9th week	Brief introduction of the structure-activity relationship, synthesis, and technical manufacture	
10 th week	Uses of representative pesticides in the following classes: organochlorines (gammexene), organophosphates (malathion).	
11 th week	Basic principles of pH metric, potentiometric, and conductometric titrations.	
12 th week	Applications of conductivity measurements: determination of the degree of dissociation.	
13 th week	Determination of Ka of acids and bases, buffer solution, buffer action.	
14 th week	Henderson–Hazel equation.	
15 th week	Buffer mechanism of buffer action.	
16 th week	Basic principles of pH metric, potentiometric, and conductometric titrations.	
17 th week	Discussion and problems taken, Tests/Seminars	
18 th week	Discussion and problems taken, Tests/Seminars	

Name of the Assistant Professor: **Dr. Poonam** Class/Section: **B.Sc.1**st **Sem.(Major Chemistry)**Department: **Chemistry**

1 st week	Maxwell's distribution of velocities and energies (derivation excluded), calculation of root mean square velocity, average velocity and most probable velocity
2 nd week	Collision diameter, collision number, collision frequency and mean free path,
3 rd week	Deviation of real gases from ideal behavior, Derivation of Vander Waals Equation of state
4 th week	Explanation of behavior of real gases using Vander Waals equation, applications in the calculation of Boyle's temperature (compression factor)
5 th week	Critical temperature, critical pressure, critical volume and their determination.
6 th week	PV isotherms of real gases, continuity of states,
7 th week	Isotherms of Vander Waals equation, relationship between critical constants and Vander Waals constants, compressibility factor
8 th week	Law of corresponding states and problem discussion
9 th week	Class Test
10 th week	Electronic displacements and its applications
11 th week	Reaction intermediates
12 th week	Concept of aromaticity, Concept of isomerism, types of isomerism, optical isomerism, optical activity
13 th week	Assignments
14 th week	Elements of symmetry, molecular chirality, enantiomers, stereogenic centre, properties of enantiomers,
15 th week	Chiral and achiral molecules with two stereogenic centres, diastereomers, threo and erythro diastereomers, meso compounds

16 th week	Resolution of enantiomers, inversion, retention and racemization
17 th week	Relative and absolute configuration, sequence rules,
18 th week	R & S system of nomenclature and Problem discussion

Name of the Assistant Professor: **Dr. Poonam** Class/Section: **B.Sc.** 1stSem.(Minor Chemistry)

Department: **Chemistry**Lesson Plan: July2025-November2025

1 st week	Atomic mass, mole concept and molar mass, Avogadro's number and its significance
2 nd week	Mole concept
3 rd week	Percentage composition, empirical and molecular formula
4 th week	Chemical reactions
5 th week	Ways of expressing concentration of solutions (molarity, normality)
6 th week	Ways of expressing concentration of solutions (molality, mole percentage, strength)
7 th week	Stoichiometric calculations involving reactants and products
8 th week	Problem discussion
9 th week	Class Test
10 th week	Electronic displacements: Inductive effect, electromeric effect
11 th week	Resonance, hyperconjugation.
12 th week	Cleavage of bonds: homolysis and heterolysis. Reaction intermediate:

	carbocation
13 th week	Assignments
14 th week	Carbanions, free radicals
15 th week	Carbenes
16 th week	Electrophiles and nucleophiles
17 th week	Aromaticity: benzenoids and Huckel's rule.
18 th week	Seminar and Problem discussion

Name of the Assistant Professor: **Dr. Poonam** Class/Section: **B.Sc.3**rd**Sem.(Major Chemistry)**

Department: **Chemistry**Lesson Plan: July2025-November2025

1 st week	General characteristics of transition metals
2 nd week	Brief discussion of differences between the first, second and third transition series, stability of various oxidation states, magnetic and spectral properties
3 rd week	Binary compounds and complexes illustrating relative stability of their oxidation states
4 th week	Chemistry of Ti, V, Cr, Mn, Fe, Co, Mo and W in various oxidation states
5 th week	Some important compounds as laboratory reagents: potassium dichromate, potassium permanganate
6 th week	Some important compounds as laboratory reagents: potassium ferrocyanide, potassium ferricyanide
7 th week	Some important compounds as laboratory reagents: sodium nitroprusside and sodium cobaltinitrite.

8 th week	Problem discussion
9 th week	Class Test
10 th week	Third law of thermodynamics: Nernst heat theorem
11 th week	Concept of residual entropy, evaluation of absolute entropy from heat capacity data.
12 th week	Gibbs and Helmholtz functions, Gibbs function (G) and Helmholtz function (A) as thermodynamic quantities
13 th week	Assignments
14 th week	A & G as criteria for spontaneity, thermodynamic equilibrium and their advantage over entropy change.
15 th week	Variation of G and A with P, V
16 th week	Variation of G and A with T, Partial molar quantities.
17 th week	Partial molar quantities
18 th week	Problem discussion

Name of the Assistant Professor: **Dr. Poonam** Class/Section: **B.Sc. 3thSem.(SEC Chemistry)** Department: **Chemistry**

1 st week	Components of cells and batteries, classification of cells and batteries
2 nd week	Operation of a cell, theoretical cell voltage, capacity, energy, specific energy and energy density of practical batteries
3 rd week	General introduction, designing to eliminate potential safety problems

4 th week	Battery safeguards when using discrete batteries, battery construction, design of rechargeable batteries
5 th week	Factors affecting battery performance
6 th week	General characteristics and applications of primary batteries, types and characteristics of primary batteries
7 th week	Comparison of the performance characteristics of primary battery systems, recharging primary batteries
8 th week	Zinc-Carbon Batteries (Leclanche´ and Zinc Chloride Cell Systems): General characteristics, cell chemistry, types of cells and batteries, construction, cell components.
9 th week	Magnesium and Aluminum Batteries: General characteristics, cell chemistry, construction of Mg/MnO2 batteries
10 th week	Performance characteristics of Mg/MnO2 batteries, sizes and types of Mg/MnO2 batteries, other types of magnesium primary batteries.
11 th week	Class Test/Seminar
12 th week	General characteristics and applications of secondary batteries, types and characteristics of secondary batteries
13 th week	Comparison of performance characteristics for secondary battery systems and introduction, chemistry, construction, performance characteristics, charging characteristics of Lead batteries
14 th week	Introduction, chemistry, construction, performance characteristics, charging characteristics of Lithium ion batteries, Iron electrode batteries
15 th week	Introduction, chemistry, construction, performance characteristics, charging characteristics of Nickel-Cadmium, Nickel-Metal hydride batteries
16 th week	Introduction, chemistry, construction, performance characteristics, charging characteristics of Nickel Zinc batteries and problem discussion
17 th week	Assignments and problem discussion
18 th week	Class Test
	I

Name of the Assistant Professor: **Dr. Poonam** Class/Section: **B.Sc. 5**th**Sem.(Physical Chemistry)** Department: **Chemistry**

Lesson Plan: July2025-November2025

1 st week	Black-body radiation, Plank's radiation law, photoelectric effect, heat capacity of solids, Compton effect
2 nd week	Wave function and its significance of Postulates of quantum mechanics, quantum mechanical operator, commutation relations, Hamiltonian operator
3 rd week	Hermitian operator, average value of square of Hermitian as a positive quantity, Role of operators in quantum mechanics, To show quantum mechanically that position and momentum cannot be predicated simultaneously
4 th week	Determination of wave function & energy of a particle in one dimensional box, Pictorial representation and its significance, Discussion and problems taken
5 th week	Optical activity, polarization— (clausius— Mossotti equation). Orientation of dipoles in an electric field, dipole moment, included dipole moment
6 th week	Measurement of dipole moment-temperature method and refractivity method, dipole moment and structure of molecules
7 th week	Magnetic permeability, magnetic susceptibility and its determination. Application of magnetic susceptibility
8 th week	Magnetic properties— paramagnetism, diamagnetism and ferromagnetism, Discussion and problems taken
9 th week	Introduction: Electromagnetic radiation, regions of spectrum, basic features of spectroscopy
10 th week	Statement of Born-oppenheimer approximation, Degrees of freedom
11 th week	Diatomic molecules. Energy levels of rigid rotator (semi-classical principles), selection rules
12 th week	Spectral intensity distribution using population distribution (Maxwell-Boltzmann distribution), determination of bond length
13 th week	Qualitative description of non-rigid rotor, isotope effect, Discussion and problems taken
14 th week	Infrared spectrum: Energy levels of simple harmonic oscillator, selection rules, pure vibrational spectrum, intensity
15 th week	Determination of force constant and qualitative relation of force constant and bond energies, effects of anharmonic motion and isotopic effect on the spectra
16 th week	Idea of vibrational frequencies of different functional groups, Discussion and problems taken
17 th week	Discussion and problems taken, Test
18 th week	Discussion and problems taken, Test

Name: Dr. Poonam **Subject:** Chemistry **Designation:** Asst. Professor Vaish College Rohtak