(July, 2025 to November, 2025)

Name of the Teacher: Dr. Dinesh Rani Bansal

Subject: Mathematics
Class: B.A./B.Sc. 1st Sem

Paper: Functions & Algebra

Paper: Fu	nctions & Algebra
1st week	Relations, Functions along with domain and range, Composition of
	functions
2 nd week	Invertibility and inverse of functions, One-to-one correspondence and the
	cardinality of a set.
3 rd week	Relations between the roots and coefficients of general polynomial
	equation in one variable.
4 th week	Solutions of polynomial equations having conditions on roots. Common
	roots and multiple roots.
	Class Test -1
5 th week	Transformation of equations. Nature of the roots of an equation Descarte's
	rule of signs.
6 th week	Solutions of cubic equations (Cardon's method). Biquadratic equations and
	their solutions.
7 th week	Matrix and its types. Symmetric, Skew-symmetric, Hermitian and Skew
	Hermitian matrices.
	Assignment-1.
8 th week	Unitary and Orthogonal Matrices, Idempotent, Involuntary, Nilpotent
	Matrices.
9 th week	Rank of a Matrix & its applications. Rank of a matrices, Row rank and
	column rank of a matrix
10 th week	Elementary Operations on matrices, Inverse of a matrix, Normal Form,
	PAQ Form
	Assignment -2
11 th week	Linear dependence and independence of rows and columns of matrices
12 th week	Applications of matrices to a system of linear (both homogeneous and non-
	homogeneous) equations, Theorems on consistency of a system of linear
	equations.
13 th week	Cayley Hamilton theorem. Eigenvalues, eigenvectors and the characteristic
	equation of a matrix.
	Class Test -2
14 th week	Minimal polynomial of a matrix. Derogatory and Non-derogatory Matrices
15 th week	Some important theorems on eigen values
16 th week	Diagonalization of matrix.
17 th week	Test and Revision
18 th week	Test and Revision
L	

(July, 2025 to November, 2025)

Name of the Teacher: Dr. Dinesh Rani Bansal

Subject: Mathematics (Minor)

Class: B.A./B.Sc. 1st Sem

Paper: Basic Mathematics

1st week	Definition and type of matrices;
2 nd week	Algebra of Matrices
3 rd week	Assignment-1 Properties of determinants; Calculation of values of determinants up to third order
4 th week	Adjoint of a matrix, Inverse of a matrix through adjoint and elementary row or column operations
5 th week	Solution of system of linear equations having unique solution and involving not more than three variables
6 th week	Class Test –1 General rules of Differentiation, Differentiation of product and quotient of two functions
7 th week	Chain Rule, Differentiation of Logarithmic and Exponential Functions
8 th week	Differentiation of implicit functions and parametric functions
9th week	Derivative of higher order
	Assignment-2
10 th week	Assignment-2 Partial derivatives up to second order; Homogeneity of functions and Euler's theorem
10 th week 11 th week	Partial derivatives up to second order; Homogeneity of functions and Euler's
	Partial derivatives up to second order; Homogeneity of functions and Euler's theorem Total differentials, Differentiation of implicit function with the help of total
11 th week	Partial derivatives up to second order; Homogeneity of functions and Euler's theorem Total differentials, Differentiation of implicit function with the help of total differentials Maxima and Minima; Cases of one variable involving second or higher order
11 th week 12 th week	Partial derivatives up to second order; Homogeneity of functions and Euler's theorem Total differentials, Differentiation of implicit function with the help of total differentials Maxima and Minima; Cases of one variable involving second or higher order derivatives; Cases of two variables involving not more than one constraint
11 th week 12 th week 13 th week	Partial derivatives up to second order; Homogeneity of functions and Euler's theorem Total differentials, Differentiation of implicit function with the help of total differentials Maxima and Minima; Cases of one variable involving second or higher order derivatives; Cases of two variables involving not more than one constraint Integration as anti-derivative process, Standard forms
11 th week 12 th week 13 th week 14 th week	Partial derivatives up to second order; Homogeneity of functions and Euler's theorem Total differentials, Differentiation of implicit function with the help of total differentials Maxima and Minima; Cases of one variable involving second or higher order derivatives; Cases of two variables involving not more than one constraint Integration as anti-derivative process, Standard forms Methods of integration by substitution, by parts and by use of partial fractions
11 th week 12 th week 13 th week 14 th week 15 th week	Partial derivatives up to second order; Homogeneity of functions and Euler's theorem Total differentials, Differentiation of implicit function with the help of total differentials Maxima and Minima; Cases of one variable involving second or higher order derivatives; Cases of two variables involving not more than one constraint Integration as anti-derivative process, Standard forms Methods of integration by substitution, by parts and by use of partial fractions Definite integration, Finding areas in simple cases Consumers and producers surplus, Nature of Commodities learning Curve,

(July, 2025 to November, 2025)

Name of the Teacher: Dr. Dinesh Rani Bansal

Subject: Mathematics (MDC)

Class: B.A./B.Sc./B.Com 3rd Sem

Paper: Applicable Mathematics

1st week	Meaning, elements, types, presentation and equality of Sets
2 nd week	Union, Intersection, Complement and Difference of Sets, Venn Diagram
3 rd week	Cartesian Product of two Sets, Applications of Set Theory
4 th week	Assignment-1
	Definition and Types of Matrices
5 th week	Algebra of Matrices, Properties of determinants
6 th week	Calculation of values of Determinants upto third order, Adjoint of a Matrix
7 th week	elementary row and column operations; Finding inverse matrix through adjoint Group Discussion -1
8 th week	Solution of a system of Linear equations having unique solution and involving not more than three variables.
9th week	Revision and Class Test - 1
10 th week	Determination of compound interest when compounded annually, half
	yearly, quarterly etc.
11 th week	Determination of principal, rate and time
	Seminar
12 th week	Continuous compounding of interest and effective rate
13 th week	Problems on depreciation and population
	Assignment-2
14 th week	Types of annuity and Amount of annuity
15 th week	Present value of different types of annuity
16 th week	Practical problems related to annuity
	Class Test -2
17 th week	Group discussion – 2 and Revision
18 th week	Revision
	I .

(July, 2025 to November, 2025)

Name of the Teacher: Dr. Dinesh Rani Bansal

Subject: Mathematics

Class: B.A./B.Sc. 5th Sem

Paper: Real Analysis

1st week	Definition and type of Riemann integration, Darboux Theorem
2 nd week	Integrability of continuous and monotonic functions
3 rd week	Integrability as a limit of sum
4 th week	The Fundamental theorem and Mean value theorems of integral calculus
5 th week	Assignment-1 Types of Improper integrals and their convergence
6 th week	Various Comparison tests, Abel's test
7 th week	Dirichlet's test, Frullani's integral
8 th week	Continuity, Differentiability and integrability of an integral of a function of a parameter
9th week	Class Test- 1 Definition and examples of metric spaces, neighborhoods, limit points, interior points
10 th week	Open and closed sets, closure and interior, boundary points
11 th week	Subspace of a metric space, equivalent metrics, Cauchy sequences, completeness,
12 th week	Cantor's intersection theorem, Baire's category theorem, Contraction Principle
13 th week	Assignment- 2 Continuous functions, Uniform continuity
14 th week	Compactness for metric spaces, Sequential compactness, Bolzano-Weierstrass property
15 th week	Total boundedness, Finite intersection property, Continuity in relation with compactness,
16 th week	Connectedness, components, continuity in relation with connectedness
17 th week	Class Test – 2 and Revision
18 th week	Revision

(July, 2025 to November, 2025)

Name of the Teacher: Dr. Madhu

Subject: Mathematics

Class: B.A./B.Sc. 5th Sem

Paper: Numerical Analysis

1 st week	Finite difference operator, Forward, backward and Central difference
	operator, fundamental theorem of difference calculus, Shift operator and
	their properties and related problems.
2 nd week	Effect of an error in a tabular value and Missing terms, Numerical problems
	related to effect of an error in a tabular value, Relation between different
	Finite difference operators
3 rd week	Definition of interpolation and extrapolation, Difference between
	Interpolation with equal intervals and interpolation with unequal intervals.
	Newton Gregory formula for forward and backward interpolation, related
	problems.
	Test and Group Discussion.
4 th week	Subdivision of interval and related problems. Divided difference and related
	theorems. Newton's divided difference interpolation formula for unequal
	intervals and related examples.
5 th week	Relation between divided differences and ordinary differences and related
	examples. Lagrange's interpolation formula, Hermite's interpolation formula
	and related examples.
6 th week	Definition of central difference interpolation formula. Gauss forward
	interpolation formula, Gauss backward interpolation formula, Sterling
	formula and related examples. Bessel's formula and related examples.
	Assignment.
7 th week	Probability Distributions, Examples of probability distribution of a random
	variable. Mean and variance of a random variable, related problems,
	Binomial distribution, Mean and variance of binomial distribution,
	recurrence formula.
8 th week	Properties of binomial distribution, fitting a binomial distribution and related
	problems. Poisson distribution, Mean, variance and recurrence formula of
	Poisson distribution, Problems related to Poisson distribution and their
	properties, Fitting a Poisson distribution and related properties.
9 th week	Normal distribution and its properties, related problems. Method of area to
	find the expected frequencies for normal curve, related examples,
	Derivatives Using Newton's Forward and Backward Interpolation formula.
10 th week	Derivatives Using Sterling and Bessel's Central Interpolation Formula and
	Newton's Divided Difference formula. Problems to find the different

	derivative when some tabulated table is given. Definition of Eigen values
	and Eigen vectors and some properties of Eigen values, Problems to find the
	Eigen values and their corresponding Eigen vectors of the matrix.
	Test and Group Discussion.
11 th week	Power method and problems to find the largest Eigen value of the matrix,
	Jacobi's method for symmetric matrix. Given's Method and problems on
	how to transform a matrix into tridiagonal form by Given's method and to
	find the Eigen vector corresponding to the largest Eigen value from the
	Eigen vectors of the tridiagonal matrix.
12 th week	House-Holder's method, QR method, Lanczo's method and related
	examples. Numerical Integration, Newton Cotes Quadrature formula and
	related problems, Numerical Integration by trapezoidal rule, Simpson's 1/3
	rule, Simpsons 3/8 rule and related problems.
13 th week	Numerical Integration by Chebychev formula and gauss quadrature formula,
	related problems. Ordinary differential equations, Initial and Boundary
	conditions, Single step and Multi step method, Euler's method and related
	examples. Modified Euler's Method and related examples.
	Assignment.
14 th week	Taylor's series method and problems related to Taylor's series method.
	Runge-Kutta method of first, second, third and fourth order, related
	examples, Picard's Method and its examples.
15 th week	Predictor-Corrector Methods, Milne-Simpson's method and its examples,
	Predictor-Corrector Methods, Milne-Simpson's method and its examples.
16 th week	Adams-Bashforth Predictor Formula and Adams-Moulton Corrector Formula
	and its examples
17 th week	Test, revision and problem discussion of whole Syllabus.
18 th week	Test, revision and problem discussion of whole Syllabus.

(July, 2025 to November, 2025)

Name of the Teacher: Dr. Madhu

Subject: Mathematics

Class: B.A./B.Sc. 3rd Sem

Paper: Ordinary Differential Equations

1 st week	Geometrical meaning of a differential equation. Exact differential equations.
	Solution of an exact differential equations.
2 nd week	Integrating factors. Various rules for finding Integrating factors. Problems
	based on finding the solution of exact Differential Equations.
3 rd week	First order higher degree equations solvable for x, y, p. Lagrange's
	equations,
4 th week	Clairaut's equations. Equation reducible to Clairaut's form. Singular
	solutions.
	Test and Group Discussion.
5 th week	Orthogonal trajectories: Cartesian coordinates and polar coordinates. Self
	orthogonal family of curves.
6 th week	Linear non-homogeneous ordinary differential equations with constant
	coefficients. Rules for evaluating Complementary function, Particular
	integral and Complete solution of Linear non-homogeneous differential
	equations with constant coefficients.
7 th week	Homogeneous linear ordinary differential equations. Equations reducible to
	homogeneous. Solution of homogeneous linear differential equations.
	Assignment.
8 th week	Linear differential equations of second order, reduction to normal form.
	Solution of the linear differential equations of second order by removing the
	first derivative.
9 th week	Solution of the linear differential equations of second order by changing the
	independent variable.
10 th week	Solution by operators of non-homogeneous linear differential equations.
	Reduction of order of a differential equation.
11 th week	Method of variations of parameters. Method of undetermined coefficients.
	Test and Group Discussion.
12 th week	Ordinary simultaneous differential equations.
13 th week	Solution of simultaneous differential equations involving
	operators $x(d/dx)$ or $t(d/dt)$ etc.
14 th week	Simultaneous equation of the form $dx/P = dy/Q = dz/R$.
	Assignment.
15 th week	Total differential equations. Condition for $Pdx + Qdy + Rdz = 0$ to be exact.
	•

16 th week	General method of solving $Pdx + Qdy + Rdz = 0$ by taking one variable
	constant. Method of auxiliary equations
17 th week	Test, revision and problem discussion of whole Syllabus.
18 th week	Test, revision and problem discussion of whole Syllabus.

Name of the Teacher: Dr. Madhu

Subject: Mathematics

Class: B.A. /B.Sc. 3rd Sem

Paper: Operations Research Techniques

1 st week	Definition, scope, methodology and applications of OR.
2 nd week	Types of OR models. Concept of optimization. Linear Programming.
	Formulation of a Linear Programming Problem (LPP).
3 rd week	Requirements for an LPP. Advantages and limitations of LPP. Graphical
	method (corner point method) for finding the solution of LPP
4 th week	Graphical method (Iso Profit or Iso-cost method) for finding the solution
	of LPP. Multiple, unbounded and infeasible solutions of LPP.
	Group Discussion
5 th week	Principle of simplex method: standard form, basic solution, basic feasible
	solution
6 th week	Computational Aspect of Simplex Method: Cases of unique feasible
	solution, no feasible solution.
7 th week	Computational Aspect of Simplex Method: multiple solution and
	unbounded solution and degeneracy.
	Class test
8 th week	Two Phase and Big- M methods.
9 th week	Duality in LPP, primal-dual relationship.
10 th week	Transportation Problem: Methods for finding basic feasible solution of a
	transportation problem.
	Assignment
11 th week	Modified distribution method for finding the optimum solution.
	Unbalanced and degenerate transportation problems.
12 th week	Transshipment problem, maximization in a transportation problem.
13 th week	Assignment Problem: Solution by Hungarian method, Unbalanced
	assignment problem
	Case study
14 th week	Maximization in an assignment problem, Crew assignment and Travelling
	salesman problem.
15 th week	Game Theory: Two person zero sum game, Game with saddle points, the
	rule of dominance
	Class test
16 th week	Algebraic, graphical and linear programming methods for solving mixed
	strategy games.
17 th week	Test, revision and problem discussion of whole Syllabus.
18 th week	Test, revision and problem discussion of whole Syllabus.
	•

(July, 2025 to November, 2025)

Name of the Teacher: Dr. Reetu Subject: Mathematics (MDC) Class: B.A./B.Sc./B.Com 1st Sem Paper: Introductory Mathematics

1 st week	Numbers, H.C.F. and L.C.M. of Numbers
2 nd week	Decimal and Fractions, Simplification
3 rd week	Square roots and cube roots, Surds and indices
4 th week	Assignment-1
	Problems on numbers
5 th week	Average
6 th week	Percentage
7 th week	Profit and Loss
	Group Discussion -1
8 th week	Ratio and proportion
9 th week	Revision and Class Test - 1
10 th week	Problem on ages
11 th week	Partnership
	Seminar
12 th week	Time and work
13 th week	Time and distance
	Assignment-2
14 th week	Problems on trains
15 th week	Mixture problem, Problems based on Calendar
16 th week	Problems based on clock.
	Class Test -2
17 th week	Group discussion – 2 and Revision
18 th week	Revision

(July, 2025 to November, 2025)

Name of the Teacher: Dr. Reetu Subject: Mathematics (SEC) Class: B.A./B.Sc. 1st Sem

Paper: Mathematical Programming in C and Numerical Methods

1 st week	Solution of Algebraic and Transcendental equations by Bisection method
1 WCCK	and Regla Falsi method
2 nd week	
2 week	Solution of Algebraic and Transcendental equations by Newton Raphson
	method and Secant method
3 rd week	Newton's iterative method for finding p th root of a number, Order of
	convergence of the iterative methods
4 th week	Assignment-1
	Solution of Simultaneous linear algebraic equations by Gauss-elimination
	method and Gauss Jordan Methed
5 th week	Triangularization method (LU decomposition method), Cholesky
	Decomposition method.
6 th week	Crout's method and Jacobi's method
a th	C C-: 1-12
7 th week	Gauss-Seidal's method, Relaxation method.
8 th week	Class Test – 1
	Computers: A General Introduction, Algorithms, Flow charts
9 th week	Introduction to C, Data types, Operators and expressions, Input /Output
	functions.
	Lab work: Program 1, Program 2
10 th week	Decisions control structure, Implementation of Loops, Switch Statement &
	Case control structures
a a th	Lab work: Program 3, Program 4
11 th week	Functions, Preprocessors
10th	Lab work: Program 5, Program 6
12 th week	Arrays
12th1-	Case study / Mini project Stringer Character Data Type Standard String handling Functions
13 th week	Strings: Character Data Type, Standard String handling Functions, Arithmetic Operations on Characters
	Lab work: Program 7, Program 8
14 th week	Structures: Definition, using Structures, use of Structures in Arrays and
14 WCCK	Arrays in Structures.
	Lab work: Program 9, Program 10
15 th week	Pointers: Pointers Data type, Pointers and Arrays, Pointers and Functions
16 th week	Practical File and Class Test -2
17 th week	Revision
18 th week	Revision

(July, 2025 to November, 2025)

Name of the Teacher: Dr. Reetu Subject: Mathematics (Minor)

Class: B.A./B.Sc. 3rd Sem

Paper: Business Mathematics

1 st week	Determination of compound interest compounded annually, half yearly,
1 WCCK	
and 1	quarterly etc.
2 nd week	Determination of principal, rate and time
3 rd week	Continuous compounding of interest and effective rate
4 th week	Problems on depreciation and population
	Assignment-1
5 th week	Types of annuity and Amount of annuity
6 th week	Present value of different types of annuity
7 th week	Valuation of simple loans and debentures
8 th week	Problems relation to sinking funds.
9 th week	Class Test – 1
	Formulation of Linear Programming Problem(LPP)
10 th week	Graphical method of solution of LPP, Problems relating to two
	variables including the case of mixed constraints
11 th week	LPP having no solution, multiple solutions, unbounded solution and
, oth	redundant constraints.
12 th week	Application of LPP in solving problems related to business and
1.2th 1	commerce
13 th week	Assignment-2
	Simp lex method of solving LPP
14 th week	Duality and Dual Problems
15 th week	Transportation Problems
16 th week	Class Test -2
17 th week	Revision
18 th week	Revision

(July, 2025 to November, 2025)

Name of the Teacher: Dr. Reetu

Subject: Mathematics Class: B.A./B.Sc. 5th Sem Paper: Groups and Rings

1 st week	Definition of a group with example and simple properties of groups
2 nd week	Subgroups and Subgroup criteria, Generation of groups, cyclic groups
3 rd week	Cosets, Left and right cosets, Index of a sub-group, Coset
	decomposition, Largrage's theorem and its consequences
4 th week	Normal subgroups, Quotient groups
5 th week	Assignment-1
	Homomorphisms, Isomophisms,
6 th week	Automorphisms and Inner automorphisms of a group, Automorphisms
	of cyclic groups
7 th week	Center of a group and derived group of a group
8 th week	Permutations groups. Even and odd permutations. Alternating
	groups, Cayley's theorem
9 th week	Class Test- 1
	Introduction to rings
10 th week	Subrings, Integral domains and fields, Characteristics of a ring
11 th week	Ideals (principle, prime and Maximal) and Quotient rings
12 th week	Ring homomorphisms, Field of quotients of an integral domain.
13 th week	Euclidean rings, Principal Ideal Domain(PID)
14 th week	Assignment- 2
	Polynomial Rings over rings, integral domain and fields
15 th week	Divisiblity of Polynomials over the rational field and some important
	theorems,
16 th week	Unique factorization domain, The Eisenstein's criterion
17 th week	Class Test – 2 and Revision
18 th week	Revision